Rotavirus
Information about rotavirus disease, vaccines and recommendations for vaccination from the Australian Immunisation Handbook.
Recently added
This page was added on 28 May 2021.
Updates made
This page was updated on 08 March 2022. View history of updates
Vaccination for certain groups of people is funded under the National Immunisation Program.
Overview
What
Before rotavirus vaccines were available, rotavirus infection was the most common cause of severe gastroenteritis in infants and young children. The illness usually begins suddenly with vomiting followed by diarrhoea. Rotavirus infection can result in dehydration and hospitalisation.
Who
All infants <6 months of age are recommended to receive a course of oral rotavirus vaccine.
How
All infants <6 months of age are recommended to receive a course of either Rotarix or RotaTeq.
The vaccination course of Rotarix is 2 doses, at 2 and 4 months of age.
The vaccination course of RotaTeq is 3 doses, at 2, 4 and 6 months of age.
Why
Infants and children can be infected with rotavirus several times during their lives. Rotavirus vaccination significantly reduces rotavirus-specific and all-cause hospital presentations for gastroenteritis.
Recommendations
Infants
All infants are recommended to receive a course of oral rotavirus vaccine before they are 6 months old.
Infants can receive the 1st dose of rotavirus vaccine as early as 6 weeks of age (see Table. Upper age limits for dosing of oral rotavirus vaccines). Infants should receive the next scheduled rotavirus vaccine dose(s) according to Table. Upper age limits for dosing of oral rotavirus vaccines.
Infants and children >6 months of age should not receive rotavirus vaccines.
Rotavirus vaccine is funded through the NIP for all infants aged <6 months of age. For details see the National Immunisation Program Schedule.
See Table. Upper age limits for dosing of oral rotavirus vaccines.
Vaccine | Doses | Age of routine administration | Age limit for 1st dose | Age limit for 2nd dose | Age limit for 3rd dose | Minimum interval between doses |
---|---|---|---|---|---|---|
Rotarix (GlaxoSmithKline Australia) | 2 oral doses (1.5 mL/dose) | 2 and 4 months | 6–14 weeks (before turning 15 weeks of age) | 10–24 weeks (before turning 25 weeks of age) | Not applicable | 4 weeks |
RotaTeq (Merck Sharp & Dohme) | 3 oral doses (2 mL/dose) | 2, 4 and 6 months | 6–12 weeks (before turning 13 weeks of age) | 10–32 weeks (preferably before turning 28 weeks of age, to allow at least 4 weeks between the 2nd and 3rd doses) | 14–32 weeks (before turning 33 weeks of age) | 4 weeks |
Rotarix (human monovalent rotavirus vaccine)
The vaccination course of Rotarix is 2 doses, at 2 and 4 months of age:
- Give the 1st dose between 6 and 14 weeks of age — that is, before turning 15 weeks old.
- Give the 2nd dose by 24 weeks of age — that is, before turning 25 weeks old.
- Ensure that the interval between the 2 doses is at least 4 weeks.
RotaTeq (pentavalent human–bovine reassortant rotavirus vaccine)
The vaccination course of RotaTeq is 3 doses, at 2, 4 and 6 months of age:
- Give the 1st dose between 6 and 12 weeks of age — that is, before turning 13 weeks old.
- Give the 2nd dose at least 4 weeks later.
- Give the 3rd dose by 32 weeks of age — that is, before turning 33 weeks old.
- Ensure that the interval between doses 2 and 3 is at least 4 weeks.
For infants receiving their 2nd dose after reaching 29 weeks of age and before turning 33 weeks of age, this 2nd dose will also be their final dose.
Receiving the 1st dose after the age cut-off
Infants should start the course of rotavirus vaccination within the recommended age limits for the 1st dose — that is:
- before 15 weeks of age for Rotarix
- before 13 weeks of age for RotaTeq
If an infant inadvertently receives the 1st dose of rotavirus vaccine after this age, they can receive the remaining vaccine doses as per the schedule if they did not have intussusception after the first dose. Maintain the minimum interval between doses within the recommended age limits for later doses.
The timing of the 1st dose is unlikely to affect the safety and efficacy of the 2nd and 3rd doses.1
Completing the schedule after rotavirus infection
Infants who develop rotavirus gastroenteritis before receiving the full course of rotavirus vaccine should still complete the full 2- or 3-dose schedule. One rotavirus infection only provides partial immunity.1
Preterm infants
Preterm infants are recommended to receive either rotavirus vaccine starting at the chronological age of at least 6 weeks, if the infant is clinically stable. Do not correct the age for prematurity.
Preterm infants (born at <37 weeks gestation) appear to have a higher risk of hospitalisation from viral gastroenteritis.2,3
See also Vaccine information.
Hospitalised infants
Vaccinating hospitalised infants, including hospitalised preterm infants, has a low risk of transmitting vaccine viruses if standard infection control precautions are maintained.4
See Contraindications and precautions for more details about hospitalised infants and other special risk groups.
Infants’ consumption of food and liquid
There are no restrictions on the infant’s feeding before or after vaccination with either rotavirus vaccine.1,5
Infants living in households with pregnant women
Infants living in households with pregnant women can receive rotavirus vaccines. Most pregnant women will have immunity to rotavirus. However, vaccinating infant contacts may benefit adults, including pregnant women, by protecting them from transmission of wild-type infection. Vaccination outweighs any theoretical concern about exposure to vaccine viruses.
Vaccines, dosage and administration
Rotavirus vaccines available in Australia
The Therapeutic Goods Administration website provides product information for each vaccine.
See also Vaccine information and Variations from product information for more details.
Rotavirus vaccines
Registered for use in infants, with an upper age limit for dose 2 of 24 weeks.
Live attenuated human rotavirus vaccine
Each 1.5 mL monodose pre-filled oral applicator or squeezable tube contains:
- ≥106.0 cell culture infectious dose 50% (CCID50) of the RIX4414 human rotavirus strain, type G1P[8]
- di-sodium adipate
- Dulbecco’s modified Eagle medium
- sterile water
For Product Information and Consumer Medicine Information about Rotarix visit the Therapeutic Goods Administration website.
View vaccine detailsRegistered for use in infants, with an upper age limit for dose 3 of 32 weeks.
Live attenuated pentavalent human–bovine reassortant rotavirus vaccine
Each 2.0 mL monodose pre-filled dosing tube contains:
- a minimum dose level of at least 2.0 x 106 infectious units of each of the rotavirus reassortants G1, G2, G3, G4 and P1A[8] derived from rotaviruses infecting human and bovine species
- sodium citrate
- sodium phosphate monobasic monohydrate
- sodium hydroxide
- polysorbate 80
- cell culture medium
For Product Information and Consumer Medicine Information about RotaTeq visit the Therapeutic Goods Administration website.
View vaccine detailsDose and route
Rotavirus vaccines are for oral administration only. However in children with a nasogastric tube or percutaneous endoscopic gastrostomy, rotavirus vaccines may be given via the feeding tube.6 Never inject rotavirus vaccines.
Rotarix
Infants receive Rotarix as a 2-dose course. Upper age limits apply (see Table. Upper age limits for dosing of oral rotavirus vaccines).
Rotarix is a clear, colourless liquid formulation in an oral applicator. The applicator may be:
- a syringe-type applicator with a plunger stopper
- a squeezable tube
To administer, squeeze the 1.5 mL dose of vaccine onto the inside of the infant’s cheek. Do not dilute or reconstitute.
RotaTeq
Infants receive RotaTeq as a 3-dose course. Upper age limits apply (see Table. Upper age limits for dosing of oral rotavirus vaccines).
RotaTeq is a pale-yellow, clear liquid that may have a pink tint. It comes in a squeezable plastic, latex-free dosing tube with a twist-off cap.
To administer, squeeze the 2 mL dose onto the inside of the infant’s cheek. Do not dilute or reconstitute.
Repeating doses
Limited data are available on:
- the safety of giving higher than the recommended dose of rotavirus vaccine
- the efficacy of a partially administered dose
If an infant spits out or vomits most of a vaccine dose within minutes of receiving it, give 1 repeat dose during the same visit.
If an infant spits out or vomits only a small part of a vaccine dose, it is still considered valid — do not repeat the dose.
Co-administration with other vaccines
Rotavirus vaccines can be co-administered with other vaccines.
Co-administration of oral rotavirus vaccines is safe and effective. Rotavirus vaccines do not interfere with the immune response to antigens in other vaccines (DTPa [diphtheria-tetanus-acellular pertussis], Hib [Haemophilus influenzae type b], polio, hepatitis B and pneumococcal conjugate vaccines).5,7,8
There are no restrictions on the timing of any other live vaccines in relation to rotavirus vaccines.9 These may include BCG (bacille Calmette–Guérin) vaccine or oral poliomyelitis vaccine given overseas.
Interchangeability of rotavirus vaccines
Try to use the same brand of vaccine for the entire vaccination course. Few studies address the interchangeability of the 2 available rotavirus vaccines. 10
However, if an infant received dose 1 or 2 as RotaTeq, give a 3rd dose of either rotavirus vaccine. The upper age limits and minimum intervals between doses must still be met, as defined in Table. Upper age limits for dosing of oral rotavirus vaccines.
Contraindications and precautions
Contraindications
The contraindications to rotavirus vaccines are:
- anaphylaxis after a previous dose of any rotavirus vaccine
- anaphylaxis after any component of a rotavirus vaccine
- history of intussusception
- congenital abnormality that may predispose to intussusception
- severe combined immunodeficiency in infants
Intussusception
Intussusception is a form of bowel obstruction, most often seen in young children. Rotavirus vaccination is associated with an increased risk of intussusception. See Adverse events.
If an infant has had intussusception before, their risk of having it again is about 10%.11 Certain congenital malformations that affect the gut, such as Meckel diverticulum, also increase the risk of intussusception.
Infants with severe combined immunodeficiency
Infants with severe combined immunodeficiency are unlikely to generate a protective immune response to vaccination, and there is a risk of harm from the vaccine. In case reports from the United States, infants with severe combined immunodeficiency had prolonged gastrointestinal disease after rotavirus vaccination, associated with the vaccine virus. 12-14
For infants with less severe immunocompromising conditions, the risk of vaccine-associated disease is likely to be less than the risk of natural rotavirus infection. See Infants who are immunocompromised in Precautions.
Precautions
Infants with acute gastroenteritis
Do not vaccinate infants with moderate to severe acute gastroenteritis until they have recovered. Rotavirus vaccines have not been studied in infants with acute gastroenteritis.
Infants with mild gastroenteritis (including mild diarrhoea) can receive the vaccine.
Infants with underlying conditions that predispose them to severe rotavirus gastroenteritis
Conditions that predispose infants to severe or complicated rotavirus gastroenteritis include: 15
- metabolic disorders
- chronic gastrointestinal disease, such as Hirschsprung disease
- malabsorption syndromes
- short gut syndrome
Data are limited about the safety of rotavirus vaccines in these groups. In one report, 8 of 9 infants with high-output ileostomies tolerated RotaTeq, and 1 infant had an increase in ileostomy losses.16
Because of the greater risk of serious rotavirus disease, the benefits from vaccination are expected to outweigh the risk in these infants. These infants are recommended to receive the vaccine.
Infants who are immunocompromised
There are theoretical concerns that vaccine-associated gastrointestinal disease could occur in immunocompromised infants who receive rotavirus vaccines. The risk from vaccination for infants with less severe immunocompromising conditions may be lower than the risk from natural rotavirus infection. Consider the risks and benefits of vaccination in the context of the infant’s specific immunocompromising condition. Seek appropriate specialist advice.1
See Vaccination for people who are immunocompromised.
Infants with HIV
Infants with HIV have received rotavirus vaccines in clinical trials.17-19 Data are limited, but suggest that the vaccines are safe and immunogenic in children with HIV who are clinically stable.20,21
See also Vaccination for people who are immunocompromised and Table. Levels of immunocompromise in children and adults with HIV.
Infants born to mothers with immunocompromising conditions
Infants who were born to mothers who received biologic therapies such as biological disease-modifying anti-rheumatic drugs (bDMARDs), particularly in the 3rd trimester, are not recommended to receive rotavirus vaccine.
See Use of immunosuppressive therapy during pregnancy in Vaccination for women who are planning pregnancy, pregnant or breastfeeding.
Infants living in households with people who are immunocompromised
Infants living in households with people who are immunocompromised are recommended to receive rotavirus vaccine.
In general, vaccinating young children in the household protects immunocompromised household members. This should outweigh the risk of transmitting vaccine virus to the immunocompromised household member. However, no studies have addressed this question.1
Washing hands and carefully disposing of soiled nappies will minimise the risk of vaccine virus transmission to other household members. See Vaccination for people who are immunocompromised.
Infants who recently received antibody-containing blood products
Infants who have recently received antibody-containing blood products and are of an eligible age can receive rotavirus vaccine. Rotavirus vaccine can be given at any time before or after, or at the same time as, any antibody-containing products.1
Minimal data are available on the impact of blood products on the immune response to the rotavirus vaccine in these infants. Completing the full rotavirus vaccine series will optimise protection.1
Hospitalised infants
Giving rotavirus vaccine to hospitalised infants, including preterm infants, is likely to carry a low risk for transmission of vaccine viruses if standard infection control precautions are maintained.
Do not delay vaccination if the infant is medically stable. In particular, do not delay vaccination if this would mean the infant is beyond the upper age limit for vaccination. See Recommendations.
If a recently vaccinated child is hospitalised for any reason, take standard infection control precautions to prevent the vaccine virus spreading in the hospital.
Adverse events
Intussusception
Clinical trials of Rotarix and RotaTeq found no association between vaccination and intussusception.22 See Vaccine information.
However, some studies have shown a link. See Australian studies and Overseas studies below.
Importantly, Australian23-26 and international27 studies have demonstrated the substantial impact of vaccination in preventing rotavirus morbidity and mortality. See also Epidemiology. Rotavirus vaccines continue to be recommended based on the positive benefit-to-risk profile.
Immunisation providers should inform parents and carers about the rare risk of intussusception, and how to be alert for its signs and symptoms.
Infants who have had a confirmed intussusception should not receive rotavirus vaccine. There may be an increased risk of the condition recurring. See Contraindications and precautions.
Australian studies
The baseline risk of intussusception for Australian infants is around 80 cases per 100,000 infants.28 A post-marketing study in Australia found a 4- to 5-fold increase in intussusception risk in the 7 days after the 1st dose of either Rotarix or RotaTeq.29 However, no overall increase in the risk of intussusception was detected during the first 9 months of life.29
Another Australian study estimated the increased risk of intussusception for either vaccine to be:30
- about 9-fold in the first 7 days after dose 1
- 2-fold in the first 7 days after dose 2
This study shows that rotavirus vaccination may be associated with about 6 additional cases of intussusception for every 100,000 infants vaccinated. This equates to 14 more cases per year in Australia.30 This estimate assumes that infants who have intussusception shortly after vaccination would not have otherwise had a ‘natural’ episode of intussusception. However, this cannot be determined from current data.
Overseas studies
An apparent increase in risk for intussusception after the 1st dose of Rotarix has been observed in Mexico, and a smaller increase after the 2nd dose of Rotarix in Brazil.27
A study in the United States found a small increased risk of intussusception after receiving RotaTeq.31 The study was underpowered to detect a risk after Rotarix.31
Other adverse events
Several studies followed up several thousand infants who received Rotarix. Vaccinated infants had no significant increase in post-vaccination vomiting, diarrhoea or fever compared with unvaccinated infants.22,32
A detailed follow-up study of 11,700 recipients of RotaTeq or placebo reported no increase in fever or irritability in the week after vaccination among vaccinated infants. There was a small increase in the incidence of vomiting (7% versus 5%) and diarrhoea (10% versus 9%).33 Post-marketing surveillance of rotavirus vaccines has not reported vomiting and diarrhoea as important adverse events after immunisation.
Infants who report an episode of diarrhoea or vomiting after vaccination should still receive subsequent rotavirus vaccine doses to complete the schedule. Potential causes of diarrhoea or vomiting after vaccination include:
- gastroenteritis that is unrelated to rotavirus vaccination or infection (that is, another virus)
- natural rotavirus infection (vaccination does not protect immediately or completely against all disease)
- symptoms from vaccine virus replication (less likely)
Infants who spit out or vomit the rotavirus vaccine may require a repeat dose. See Interruption to oral rotavirus vaccination in the Administration of vaccines chapter.
Detecting rotavirus in routine stool tests
If routine stool testing detects rotavirus in a recently vaccinated infant, this can indicate either natural infection or vaccine virus. Vaccine virus shedding commonly occurs after vaccination. See Vaccine information.
Specific testing can differentiate between vaccine virus and natural infection, but this is rarely needed.
Nature of the disease
Rotaviruses are non-enveloped RNA viruses. They are classified according to the 2 surface proteins they contain:
- VP7, the ‘G’ glycoprotein
- VP4, the protease-cleaved ‘P’ protein
The G and P proteins are targets for the neutralising antibodies that help protect against reinfection and disease.15,34
Rotavirus strains are most commonly referred to by their G serotype. G1, G2, G3, G4 and G9 account for around 90% of serotypes, both globally and in Australia.35,36 The most common P types found in combination with these G types are:37
- P1A[8], found with all common G types except G2
- P1B[4], usually found in combination with G2
Transmission
Infected children shed high concentrations of rotaviruses in their stools. Viruses are transmitted by the faecal–oral route, through both close person-to-person contact and fomites.38 Rotaviruses might also be transmitted by other modes, such as through faecally contaminated food and water, and probably through respiratory droplets.1,39
The incubation period is 1–3 days.
Clinical features
Rotavirus is the main agent of severe dehydrating gastroenteritis in infants and young children in developed and developing countries.15,34 The spectrum of rotavirus infection can include:
- asymptomatic infection
- mild, watery diarrhoea of limited duration
- severe dehydrating diarrhoea with vomiting, fever, electrolyte imbalance, shock and death
Rotavirus infections are often more severe than other common causes of diarrhoea. These infections are more likely to result in dehydration and hospitalisation.1,15
The illness usually begins suddenly with vomiting, followed by diarrhoea.1 Up to one-third of patients have a temperature of >39°C in the first few days of illness. Symptoms generally resolve in 3–7 days.
Epidemiology
Natural infection and immunity
Prior to the availability of vaccine, infection in early childhood was thought to be universal in children. People can be infected several times in their lives. The first infection, which typically occurs between 3 and 36 months of age, is most likely to cause severe diarrhoea and dehydration.40,41
The degree of protection after natural infection varies. After a single natural infection:41
- 40% of children are protected against any subsequent infection with rotavirus
- 75% are protected against diarrhoea from a subsequent rotavirus infection
- 88% are protected against severe diarrhoea caused by rotavirus
Repeat infections provide even greater protection.
Hospitalisation and deaths from rotavirus infection in Australia
Rotavirus vaccines were added to the National Immunisation Program in 2007. Before this, about 10,000 children <5 years of age were hospitalised because of rotavirus each year in Australia. 42,43 This equated to around half of all hospitalisations for acute gastroenteritis in this age group.44,45 Rotavirus affected about 3.8% of all children (1 in 27) by the age of 5 years.
In addition to hospitalisations:44,46
- about 115,000 children <5 years of age saw a general practitioner
- 22,000 children attended an emergency department because of rotavirus
On average, 2 deaths were attributed to rotavirus each year in Australia, but this is likely to be a minimum estimate.42
Since 2007, both rotavirus-specific and all-cause hospital presentations for gastroenteritis have reduced by more than 70%.43 Emergency department visits for acute gastroenteritis have also declined, as have rotavirus notifications.43
Patterns of rotavirus infection in Australia
Seasonal patterns
In temperate Australia, rotavirus infections follow a seasonal pattern. The peak incidence is in mid to late winter.
The northern tropical and arid regions do not show a consistent seasonal pattern. Disease peaks are unpredictable, 47 and widespread epidemics cause severe strain on healthcare services.48,49
In Aboriginal and Torres Strait Islander children
Rotavirus hospitalisation rates in Aboriginal and Torres Strait Islander infants and children have decreased by approximately 80%.42
However, compared with their non-Indigenous peers, Aboriginal and Torres Strait Islander infants and children are hospitalised with rotavirus gastroenteritis about 3–5 times more often.42,43,50
Rotavirus infection in people who are immunocompromised
Immunocompromised children and adults are at increased risk of severe, prolonged and even fatal rotavirus gastroenteritis.15,51,52 This includes people with congenital immunodeficiency, or people who have received a haematopoietic stem cell transplant or solid organ transplant.
Rotavirus is an important cause of nosocomial gastroenteritis.53-57 It can also cause disease in adults, especially among people caring for children and people residing in aged care facilities.15,58,59
Vaccine information
Two oral rotavirus vaccines are available in Australia. Their efficacy and safety in preventing rotavirus gastroenteritis have been extensively evaluated.17-19,22,60-62 Both are live attenuated vaccines given orally to infants, but the component vaccine viruses differ.
Rotarix (GlaxoSmithKline) contains 1 strain of attenuated human rotavirus (G1P[8] strain). It protects against non-G1 serotypes based on other shared epitopes.
RotaTeq (Merck Sharp & Dohme) contains 5 human–bovine reassortant rotavirus strains: G1, G2, G3, G4 and P1A[8]. Protective efficacy against different serotypes is similar in both vaccines.22,60,62
Efficacy and effectiveness in middle- and high-income countries
In middle- and high-income countries, a course of vaccination with either Rotarix or RotaTeq prevents:60,62-64
- rotavirus gastroenteritis of any severity in approximately 70% of recipients
- severe rotavirus gastroenteritis and rotavirus hospitalisation for 85–100% of recipients for up to 3 years
Vaccination is also highly effective in preventing visits to the emergency department, clinic or general practitioner.62,63 In pre-market clinical trials, rotavirus vaccination prevented around half (42–58%) of hospital admissions for acute gastroenteritis of any cause in young children. This suggests that rotavirus is responsible for more gastroenteritis than is detected using routine testing and admission practices.60,62,63
Post-marketing studies in Australia and the United States have confirmed high vaccine effectiveness and impressive reductions in both rotavirus-coded and all-cause gastroenteritis hospitalisations.26,65-70
Hospitalisations have also decreased in age groups that are not eligible for vaccination, suggesting that rotavirus vaccines have herd-protective effects.26,65,68
Efficacy and effectiveness in rural and resource-poor areas
Rural and resource-poor settings have reported more modest estimates of efficacy.17-19,71 However, post-marketing studies in Brazil and Mexico (middle-income countries) have shown substantial reductions in diarrhoea-related mortality since rotavirus vaccines were introduced.72,73
Lower vaccine effectiveness among Aboriginal and Torres Strait Islander children have been reported for both Rotarix and Rotateq vaccines.43,69,74,75 The remote Australian setting is unique, and these results should not be extrapolated to elsewhere in Australia.
Efficacy in preterm infants
In clinical trials, RotaTeq or placebo was given to 2070 preterm infants (25–36 weeks gestational age; median 34 weeks). Efficacy against rotavirus gastroenteritis of any severity appeared to be comparable with efficacy in full-term infants (73%; 95% CI: –2% to 95%).76
Rotarix should give the same results, because it appears to be safe and immunogenic in preterm infants.77
Vaccine virus shedding
Vaccine viruses replicate in the intestinal mucosa. Vaccinated people can shed the virus in their stools, particularly after the 1st dose.
Vaccine virus shedding is more common with Rotarix. Virus is detected in stools 1 week after vaccination in up to: 7,8
- 80% of 1st-dose recipients
- 30% of 2nd-dose recipients
In 1 study of 80 sets of twins, 15 vaccinated infants transmitted the Rotarix vaccine strain, G1P[8] to their unvaccinated twin.78 This suggests that vaccine virus can be transmitted to unvaccinated contacts, but the clinical implication of this has not been studied. See Contraindications and precautions.
RotaTeq is only shed after the 1st dose in up to 13% of recipients.62
Porcine circoviruses in rotavirus vaccines
Adventitious DNA fragments of porcine circoviruses have been detected in both Rotarix and RotaTeq vaccines. However, porcine circoviruses have never been shown to cause illness in humans and are considered non-pathogenic.
Transporting, storing and handling vaccines
Transport according to National Vaccine Storage Guidelines: Strive for 5.79 Store at +2°C to +8°C. Do not freeze. Protect from light.
Public health management
Rotavirus is a notifiable disease in some states and territories in Australia.
State and territory public health authorities can provide advice about the public health management of rotavirus, including management of cases and contacts.
Variations from product information
Rotarix
The product information for Rotarix states that the vaccine should not be given to people with any chronic gastrointestinal disease.
The Australian Technical Advisory Group on Immunisation (ATAGI) recommends that pre-existing chronic gastrointestinal disease is not a contraindication to rotavirus vaccination. The exceptions are conditions that may predispose to intussusception. See Contraindications and precautions.
RotaTeq
The product information for RotaTeq states that if a dose of vaccine is spat out or vomited, a replacement dose should not be given.
ATAGI recommends that infants who spit out or vomit most of a dose can receive a single replacement dose. See Vaccines, dosage and administration.
References
- Centers for Disease Control and Prevention (CDC), Cortese MM, Parashar UD. Prevention of rotavirus gastroenteritis among infants and children: recommendations of the Advisory Committee on Immunization Practices (ACIP). [erratum appears in MMWR Recomm Rep. 2010 Aug 27;59(33):1074]. MMWR. Recommendations and Reports 2009;58(RR-2):1-25.
- Newman RD, Grupp-Phelan J, Shay DK, Davis RL. Perinatal risk factors for infant hospitalization with viral gastroenteritis. Pediatrics 1999;103:e3.
- Dennehy PH, Cortese MM, Bégué RE, et al. A case-control study to determine risk factors for hospitalization for rotavirus gastroenteritis in US children. Pediatric Infectious Disease Journal 2006;25:1123-31.
- Thrall S, Doll MK, Nhan C, et al. Evaluation of pentavalent rotavirus vaccination in neonatal intensive care units. Vaccine 2015;33:5095-102.
- Dennehy PH, Brady RC, Halperin SA, et al. Comparative evaluation of safety and immunogenicity of two dosages of an oral live attenuated human rotavirus vaccine. Pediatric Infectious Disease Journal 2005;24:481-8.
- Melbourne Vaccine Education Centre. Rotavirus. 2023. (Accessed 14 November 2023). https://mvec.mcri.edu.au/references/rotavirus/
- Phua KB, Quak SH, Lee BW, et al. Evaluation of RIX4414, a live, attenuated rotavirus vaccine, in a randomized, double-blind, placebo-controlled phase 2 trial involving 2464 Singaporean infants. Journal of Infectious Diseases 2005;192 Suppl 1:S6-16.
- Salinas B, Pérez-Schael I, Linhares AC, et al. Evaluation of safety, immunogenicity and efficacy of an attenuated rotavirus vaccine, RIX4414: a randomized, placebo-controlled trial in Latin American infants. Pediatric Infectious Disease Journal 2005;24:807-16.
- World Health Organization (WHO). Summary of WHO position papers – recommended routine immunizations for children. 2018. (Accessed May 2018).
- Cortese MM, Immergluck LC, Held M, et al. Effectiveness of monovalent and pentavalent rotavirus vaccine. Pediatrics 2013;132:e25-33.
- Daneman A, Alton DJ, Lobo E, et al. Patterns of recurrence of intussusception in children: a 17-year review. Pediatric Radiology 1998;28:913-9.
- Patel NC, Hertel PM, Estes MK, et al. Vaccine-acquired rotavirus in infants with severe combined immunodeficiency. New England Journal of Medicine 2010;362:314-9.
- Bakare N, Menschik D, Tiernan R, Hua W, Martin D. Severe combined immunodeficiency (SCID) and rotavirus vaccination: reports to the Vaccine Adverse Events Reporting System (VAERS). Vaccine 2010;28:6609-12.
- Werther RL, Crawford NW, Boniface K, Kirkwood CD, Smart JM. Rotavirus vaccine induced diarrhea in a child with severe combined immune deficiency [letter]. Journal of Allergy and Clinical Immunology 2009;124:600.
- Estes MK, Kapikian AZ. Rotaviruses. In: Knipe DM, Howley PM, Griffin DE, et al., eds. Fields virology. 5th ed. Philadelphia, PA: Lippincott, Williams and Wilkins; 2007.
- Fang AY, Tingay DG. Early observations in the use of oral rotavirus vaccination in infants with functional short gut syndrome. Journal of Paediatrics and Child Health 2011;48:512-6.
- Madhi SA, Cunliffe NA, Steele D, et al. Effect of human rotavirus vaccine on severe diarrhea in African infants. New England Journal of Medicine 2010;362:289-98.
- Armah GE, Sow SO, Breiman RF, et al. Efficacy of pentavalent rotavirus vaccine against severe rotavirus gastroenteritis in infants in developing countries in sub-Saharan Africa: a randomised, double-blind, placebo-controlled trial. The Lancet 2010;376:606-14.
- Zaman K, Dang DA, Victor JC, et al. Efficacy of pentavalent rotavirus vaccine against severe rotavirus gastroenteritis in infants in developing countries in Asia: a randomised, double-blind, placebo-controlled trial. The Lancet 2010;376:615-23.
- Steele AD, Cunliffe N, Tumbo J, et al. A review of rotavirus infection in and vaccination of human immunodeficiency virus-infected children. Journal of Infectious Diseases 2009;200 Suppl 1:S57-62.
- Steele AD, Madhi SA, Louw CE, et al. Safety, reactogenicity, and immunogenicity of human rotavirus vaccine RIX4414 in human immunodeficiency virus-positive infants in South Africa. Pediatric Infectious Disease Journal 2011;30:125-30.
- Soares-Weiser K, MacLehose H, Bergman H, et al. Vaccines for preventing rotavirus diarrhoea: vaccines in use. Cochrane Database of Systematic Reviews 2012;(2):CD008521. doi:10.1002/14651858.CD008521.pub2.
- Buttery JP, Lambert SB, Grimwood K, et al. Reduction in rotavirus-associated acute gastroenteritis following introduction of rotavirus vaccine into Australia's national childhood vaccine schedule. [erratum appears in Pediatr Infect Dis J. 2011 Oct; 30(10):916]. Pediatric Infectious Disease Journal 2011;30(1 Suppl):S25-9.
- Clarke MF, Davidson GP, Gold MS, Marshall HS. Direct and indirect impact on rotavirus positive and all-cause gastroenteritis hospitalisations in South Australian children following the introduction of rotavirus vaccination. Vaccine 2011;29:4663-7.
- Dey A, Wang H, Menzies R, Macartney K. Changes in hospitalisations for acute gastroenteritis in Australia after the national rotavirus vaccination program. Medical Journal of Australia 2012;197:453-7.
- Macartney KK, Porwal M, Dalton D, et al. Decline in rotavirus hospitalisations following introduction of Australia's national rotavirus immunisation programme. Journal of Paediatrics and Child Health 2011;47:266-70.
- Patel MM, López-Collada VR, Bulhões MM, et al. Intussusception risk and health benefits of rotavirus vaccination in Mexico and Brazil. New England Journal of Medicine 2011;364:2283-92.
- Justice F, Carlin J, Bines J. Changing epidemiology of intussusception in Australia. Journal of Paediatrics and Child Health 2005;41:475-8.
- Buttery JP, Danchin MH, Lee KJ, et al. Intussusception following rotavirus vaccine administration: post-marketing surveillance in the National Immunization Program in Australia. Vaccine 2011;29:3061-6.
- Carlin JB, Macartney KK, Lee KJ, et al. Intussusception risk and disease prevention associated with rotavirus vaccines in Australia's national immunization program. Clinical Infectious Diseases 2013;57:1427-34.
- Yih WK, Lieu TA, Kulldorff M, et al. Intussusception risk after rotavirus vaccination in US infants. New England Journal of Medicine 2014;370:503-12.
- Cheuvart B, Friedland LR, Abu-Elyazeed R, et al. The human rotavirus vaccine RIX4414 in infants: a review of safety and tolerability. Pediatric Infectious Disease Journal 2009;28:225-32.
- Dennehy PH, Goveia MG, Dallas MJ, Heaton PM. The integrated phase III safety profile of the pentavalent human-bovine (WC3) reassortant rotavirus vaccine. International Journal of Infectious Diseases 2007;11 Suppl 2:S36-42.
- Cunliffe NA, Nakagomi O. A critical time for rotavirus vaccines: a review. Expert Review of Vaccines 2005;4:521-32.
- Bishop RF, Masendycz PJ, Bugg HC, Carlin JB, Barnes GL. Epidemiological patterns of rotaviruses causing severe gastroenteritis in young children throughout Australia from 1993 to 1996. Journal of Clinical Microbiology 2001;39:1085-91.
- Kirkwood CD, Bogdanovic-Sakran N, Cannan D, Bishop RF, Barnes GL. National Rotavirus Surveillance Program annual report, 2004–05. Communicable Diseases Intelligence 2006;30:133-6.
- Cunliffe NA, Bresee JS, Gentsch JR, Glass RI, Hart CA. The expanding diversity of rotaviruses. The Lancet 2002;359:640-2.
- Butz AM, Fosarelli P, Dick J, Cusack T, Yolken R. Prevalence of rotavirus on high-risk fomites in day-care facilities. Pediatrics 1993;92:202-5.
- Dennehy PH, Nelson SM, Crowley BA, Saracen CL. Detection of rotavirus RNA in hospital air samples by polymerase chain reaction (PCR). [1998 abstract The American Pediatric Society and The Society for Pediatric Research]. Pediatric Research 1998;43 Suppl 2:143A.
- Franco MA, Angel J, Greenberg HB. Immunity and correlates of protection for rotavirus vaccines. Vaccine 2006;24:2718-31.
- Velázquez FR, Matson DO, Calva JJ, et al. Rotavirus infection in infants as protection against subsequent infections. New England Journal of Medicine 1996;335:1022-8.
- Jackson J, Sonneveld N, Rashid H, et al. Vaccine preventable diseases and vaccination coverage in Aboriginal and Torres Strait Islander people, Australia, 2016-2019. Communicable Diseases Intelligence 2023;47.
- Middleton BF, Danchin M, Fathima P, et al. Review of the health impact of the oral rotavirus vaccine program in children under 5 years in Australia: 2006-2021. Vaccine 2023;41:636-48.
- Galati JC, Harsley S, Richmond P, Carlin JB. The burden of rotavirus-related illness among young children on the Australian health care system. Australian and New Zealand Journal of Public Health 2006;30:416-21.
- Newall AT, MacIntyre R, Wang H, Hull B, Macartney K. Burden of severe rotavirus disease in Australia. Journal of Paediatrics and Child Health 2006;42:521-7.
- Carlin JB, Chondros P, Masendycz P, et al. Rotavirus infection and rates of hospitalisation for acute gastroenteritis in young children in Australia, 1993–1996. Medical Journal of Australia 1998;169:252-6.
- Blumer C, Roche P, Kirkwood C, Bishop R, Barnes G. Surveillance of viral pathogens in Australia. Rotavirus. Communicable Diseases Intelligence 2003;27:496-503.
- Armstrong P. Rotaviral gastroenteritis in the NT: a description of the epidemiology 1995–2001 and future directions for research. The Northern Territory Disease Control Bulletin 2001;8(3):1-5.
- Williams G, Zerna L. Rotavirus outbreak in central Australia. Australian Infection Control 2002;7:51-8.
- Schultz R. Rotavirus gastroenteritis in the Northern Territory, 1995–2004. Medical Journal of Australia 2006;185:354-6.
- Saulsbury FT, Winkelstein JA, Yolken RH. Chronic rotavirus infection in immunodeficiency. Journal of Pediatrics 1980;97:61-5.
- Yolken RH, Bishop CA, Townsend TR, et al. Infectious gastroenteritis in bone-marrow-transplant recipients. New England Journal of Medicine 1982;306:1009-12.
- Fischer TK, Bresee JS, Glass RI. Rotavirus vaccines and the prevention of hospital-acquired diarrhea in children. Vaccine 2004;22 Suppl 1:S49-54.
- Frühwirth M, Heininger U, Ehlken B, et al. International variation in disease burden of rotavirus gastroenteritis in children with community- and nosocomially acquired infection. Pediatric Infectious Disease Journal 2001;20:784-91.
- Gleizes O, Desselberger U, Tatochenko V, et al. Nosocomial rotavirus infection in European countries: a review of the epidemiology, severity and economic burden of hospital-acquired rotavirus disease. Pediatric Infectious Disease Journal 2006;25(1 Suppl):S12-21.
- Ringenbergs ML, Davidson GP, Spence J, Morris S. Prospective study of nosocomial rotavirus infection in a paediatric hospital. Australian Paediatric Journal 1989;25:156-60.
- Snelling T, Cripps T, Macartney K, et al. Nosocomial rotavirus infection in an Australian children's hospital [letter]. Journal of Paediatrics and Child Health 2007;43:327.
- Anderson EJ, Weber SG. Rotavirus infection in adults. The Lancet Infectious Diseases 2004;4:91-9.
- Marshall J, Botes J, Gorrie G, et al. Rotavirus detection and characterisation in outbreaks of gastroenteritis in aged-care facilities. Journal of Clinical Virology 2003;28:331-40.
- Ruiz-Palacios GM, Pérez-Schael I, Velázquez FR, et al. Safety and efficacy of an attenuated vaccine against severe rotavirus gastroenteritis. New England Journal of Medicine 2006;354:11-22.
- Vesikari T, Karvonen A, Prymula R, et al. Efficacy of human rotavirus vaccine against rotavirus gastroenteritis during the first 2 years of life in European infants: randomised, double-blind controlled study. The Lancet 2007;370:1757-63.
- Vesikari T, Matson DO, Dennehy P, et al. Safety and efficacy of a pentavalent human-bovine (WC3) reassortant rotavirus vaccine. New England Journal of Medicine 2006;354:23-33.
- Vesikari T, Giaquinto C, Huppertz HI. Clinical trials of rotavirus vaccines in Europe. Pediatric Infectious Disease Journal 2006;25:S42-7.
- Vesikari T, Karvonen A, Ferrante SA, Kuter BJ, Ciarlet M. Sustained efficacy of the pentavalent rotavirus vaccine, RV5, up to 3.1 years following the last dose of vaccine. Pediatric Infectious Disease Journal 2010;29:957-63.
- Cortese MM, Tate JE, Simonsen L, Edelman L, Parashar UD. Reduction in gastroenteritis in United States children and correlation with early rotavirus vaccine uptake from national medical claims databases. Pediatric Infectious Disease Journal 2010;29:489-94.
- Curns AT, Steiner CA, Barrett M, et al. Reduction in acute gastroenteritis hospitalizations among US children after introduction of rotavirus vaccine: analysis of hospital discharge data from 18 US states. Journal of Infectious Diseases 2010;201:1617-24.
- Field EJ, Vally H, Grimwood K, Lambert SB. Pentavalent rotavirus vaccine and prevention of gastroenteritis hospitalizations in Australia. Pediatrics 2010;126:e506-12.
- Lambert SB, Faux CE, Hall L, et al. Early evidence for direct and indirect effects of the infant rotavirus vaccine program in Queensland. [erratum appears in Med J Aust. 2010 May 3;192(9):525]. Medical Journal of Australia 2009;191:157-60.
- Snelling TL, Schultz R, Graham J, et al. Rotavirus and the Indigenous children of the Australian outback: monovalent vaccine effective in a high-burden setting. Clinical Infectious Diseases 2009;49:428-31.
- Wang FT, Mast TC, Glass RJ, Loughlin J, Seeger JD. Effectiveness of the pentavalent rotavirus vaccine in preventing gastroenteritis in the United States. Pediatrics 2010;125:e208-13.
- World Health Organization (WHO). Meeting of the immunization Strategic Advisory Group of Experts, April 2009 – conclusions and recommendations. Weekly Epidemiological Record 2009;84:220-36.
- Lanzieri TM, Linhares AC, Costa I, et al. Impact of rotavirus vaccination on childhood deaths from diarrhea in Brazil. International Journal of Infectious Diseases 2011;15:e206-10.
- Richardson V, Hernandez-Pichardo J, Quintanar-Solares M, et al. Effect of rotavirus vaccination on death from childhood diarrhea in Mexico. New England Journal of Medicine 2010;362:299-305.
- Snelling TL, Andrews RM, Kirkwood CD, Culvenor S, Carapetis JR. Case-control evaluation of the effectiveness of the G1P[8] human rotavirus vaccine during an outbreak of rotavirus G2P[4] infection in Central Australia. Clinical Infectious Diseases 2011;52:191-99.
- Middleton BF, Danchin M, Quinn H, et al. Retrospective case-control study of 2017 G2P[4] rotavirus epidemic in rural and remote Australia. Pathogens 2020;9:790.
- Goveia MG, Rodriguez ZM, Dallas MJ, et al. Safety and efficacy of the pentavalent human-bovine (WC3) reassortant rotavirus vaccine in healthy premature infants. Pediatric Infectious Disease Journal 2007;26:1099-104.
- Omenaca F, Sarlangue J, Szenborn L, et al. Safety, reactogenicity and immunogenicity of the human rotavirus vaccine in preterm European Infants: a randomized phase IIIb study. Pediatric Infectious Disease Journal 2012;31:487-93.
- Rivera L, Peña LM, Stainier I, et al. Horizontal transmission of a human rotavirus vaccine strain – a randomized, placebo-controlled study in twins. Vaccine 2011;29:9508-13.
- National vaccine storage guidelines: Strive for 5. 3rd ed. Canberra: Australian Government Department of Health and Ageing; 2019. https://www.health.gov.au/resources/publications/national-vaccine-storage-guidelines-strive-for-5
Page history
- Improved clarity regarding recommendations to vaccinate infants with underlying conditions that predispose them to severe rotavirus gastroenteritis, despite existing precautions. See 'Infants with underlying conditions that predispose them to severe rotavirus gastroenteritis' under 'Precautions'
- Added relevant information and guidance on interrupted vaccination
Guidance on vaccination after the age cut-off expanded.
Guidance on administration of rotavirus vaccine to infants exposed to bDMARDs in utero updated.
Changes to 4.17.6 Dosage and administration
Amendment of text relating to the need for a third dose of vaccine.
- Improved clarity regarding recommendations to vaccinate infants with underlying conditions that predispose them to severe rotavirus gastroenteritis, despite existing precautions. See 'Infants with underlying conditions that predispose them to severe rotavirus gastroenteritis' under 'Precautions'
- Added relevant information and guidance on interrupted vaccination
Guidance on vaccination after the age cut-off expanded.
Guidance on administration of rotavirus vaccine to infants exposed to bDMARDs in utero updated.
Changes to 4.17.6 Dosage and administration
Amendment of text relating to the need for a third dose of vaccine.